
CS 2412 Data Structures

Chapter 3

Queues

3.1 Definitions

A queue is an ordered collection of data in which all additions to

the collection are made at one end (called rare or tail) and all

deletions from the collection are made at the other end (called front

or head).

A stack is FILO, while a queue is FIFO (first-in first-out).

Data Structure 2014 R. Wei 2

Applications:

• CPU waiting list.

• Network router packets sequence.

• Simulations

Data Structure 2014 R. Wei 3

Main operations:

• Creation

• Clear (damage)

• Append (add element)

• Serve (remove element)

Data Structure 2014 R. Wei 4

Specification:

void CteateQueue(Queue *q);

precondition: None.

postcondition: The queue q has been initialized to be empty.

(Also can use Queue* CreateQueue(void);)

void ClearQueue(Queue *q);

precondition: The queue q has been created.

postcondition: All entries have been removed from q and it is now

empty.

Data Structure 2014 R. Wei 5

Boolean QueueEmpty(Queue *q);

precondition: The queue has been created.

postcondition: The function returns true or false according as queue

q is empty or not.

Boolean QueueFull(Queue *q);

precondition: The queue has been created.

postcondition: The function returns true or false according as queue

q is full or not.

Data Structure 2014 R. Wei 6

void Append(QueueEntry x, Queue *q);

precondition: The queue has been create and is not full.

postcondition: The entry x has been stored in the queue as last

entry.

void Serve(QueueEntry *x, Queue *q);

precondition: The queue has been create and is not empty.

postcondition: The first entry has been removed and returned as

the value of x.

Data Structure 2014 R. Wei 7

Some other operations which are not usual operations of a queue.

int QueueSize(Queue *q);

precondition: The queue has been created.

postcondition: The function returns the number of entries in the

queue.

void QueueFront(QueueEntry *x, Queue *q);

precondition: The queue has been created and it is not empty.

postcondition: The value of first entry of q is copied to x. The

queue remains unchanged.

Data Structure 2014 R. Wei 8

3.2 Implementations

Using an array to implement a queue has some difficulties.

• If after each Serve every item moves forward, then time

consume is big.

• If the item not moves, the space will be wasted.

A circular array can be used to solve that problem.

Data Structure 2014 R. Wei 9

Circular array implementation

To let an array be circular in C, we can use:

if(i>=MAX-1)

i=0;

else

i++;

or

i=(i+1)% MAX

The difficulty is how to know the queue is empty or full if we use a

circular array.

Data Structure 2014 R. Wei 10

We can use a variable count to track of the numbers of entries in a

queue to avoid the confusion of full or empty.

#define MAXQUEUE 10

typedef char QueueEntry;

typedef struct queue{

int count;

int front;

int rear;

QueueEntry entry[MAXQUREUE];

} Queue;

Data Structure 2014 R. Wei 11

Prototypes:

void CreateQueue(Queue *);

void Append(QueueEntry,Queue *);

void Serve(QueueEntry *,Queue *);

Boolean QueueEmpty(Queue *);

Boolean QueueFull(Queue *);

Data Structure 2014 R. Wei 12

void CreateQueue(Queue *q)

{

q->count = 0;

q->front = 0;

q->rear = -1;

}

void Append(QueueEntry x,Queue *q)

{ if(QueueFull(q))

Error("Cannot append an entry to a full queue.");

else{

q->count++;

q->rear = (q->rear +1)%MAXQUEUE;

q->entry[q->rear)]=x;

}

}

Data Structure 2014 R. Wei 13

void Serve(QueueEntry *x,Queue *q)

{

if(QueueEmpty(q))

Error("Can’t serve from a an empty queue.");

else{

q->cont--;

*x = q->entry[q->front];

q->front=(q->front+1)%MAXQUEUE;

}

}

Data Structure 2014 R. Wei 14

Boolean QueueEmpty(Queue *q)

{

return q->count <=0;

}

Boolean QueueFull(Queue *q)

{

return q->cout >=MAXQUEUE;

}

int QueueSize(Queue *q)

{

return q->count;

}

Data Structure 2014 R. Wei 15

3.3 Computer simulation

Simulation is the use of one system to imitate the behavior of

another system, when it is too expensive or dangerous to

experiment with the real system.

A computer simulation uses the steps of a program to imitate the

behavior of a system under study.

We study a simple but useful computer simulation which

concentrates on queues as its basic data structure. These

simulations imitate the behavior of systems in which there are

queues of objects waiting to be served by various processes.

Data Structure 2014 R. Wei 16

Example

Consider a small but busy airport with only one runway:

• In each unit of time, one plane can land or one plane can take

off, but not both.

• Planes arrive ready to land or to take off at random times.

• It is better to keep a plane waiting on the ground than in the

air, so the airport allows a plane to take off only if there are no

planes waiting to land.

Data Structure 2014 R. Wei 17

We will use two queues: takeoff and landing in the simulation.

A plane is appended to a queue at random with certain probability

in a unit time.

The simulation runs for many units of time. It starts for curtime

from 1 to a variable endtime.

We will use a function RandomNumber() to output a random

number between 0 and INT MAX with given average, which will

denote the number of planes at a unit of time.

Data Structure 2014 R. Wei 18

Outline of the simulation program:

Settings:

Queue landing, takeoff;

Queue *pl = &landing;

Queue *pt = &takeoff;

Plane plane; //abstrat of a plane

int curtime; //current time unit

int endtime; //total number of time units to run

Initialization:

CreateQueue(pl);

CreateQueue(pt);

Data Structure 2014 R. Wei 19

Simulate queue landing at a unit of time:

for(i = 1; i <= RandomNumber();i++){

NewPlane(&plane); //new planes arrive

if (QueueFull(pl)

Refuse(plane);

else

Append(plane,pl);

}

Simulation of queue takeoff at a unit of time is similar.

Data Structure 2014 R. Wei 20

Simulation of the control:

if(!QueueEmpty(pl)){

Serve(&plane,pl);

Land(plane);

} else if(!QueueEmpty(pt)){

Serve(&plane,pt);

} else

Idle();

Data Structure 2014 R. Wei 21

Now we consider some details.

First, the queues we used are queue of planes.

#define MAXQUEUE 5 //use a small value for testing

typedef enum action {ARRIVE, DEPART} Action;

typedef struct plane {

int id; //id number of plane

int tm; //time of arrival in queue

} Plane;

typedef Plane QueueEntry;

typedef struct queue{

int count; //number of planes in the queue

int front;

int rear;

QueueEntry entry[MAXQUEUE];

} Queue;

Data Structure 2014 R. Wei 22

The purpose of the simulation is to obtain some data about the

airport. So we need to record the number of planes, the waiting

time, the numbers of departure and arriving planes, etc.

The simulation also wants to know the different data in different

settings of the probability of arriving planes and departing planes.

Data Structure 2014 R. Wei 23

/*NewPlane: make a new record for a plan, update nplanes.

Pre: None.

Post: Makes a new plane and update nplanes.*/

void NewPlane(Plane *p,int *nplanes,int curtime,Action kind)

{(*nplanes)++;

p->id=*nplanes;

p->tm=curtime;

switch(kind){

case ARRIVE:

printf(" Plane %3d ready to land.\n",*nplanes);

break;

case DEPART:

printf(" Plane %3d ready to take off.\n",*nplanes);

break;

}

}

Data Structure 2014 R. Wei 24

/*Refuse: processes a plan when the queueis full.

Pre: None.

Post: processes a plane requesting runway, but queue is full*/

void Refuse(Plane p, int *nrefuse,Action kind)

{

switch(kind) {

case ARRIVE:

printf(" Plane %3d directed to another airport.\n",p.id);

break;

case DEPART:

printf(" Plane %3d told to try later.\n".p.id);

break;

}

(*nrefuse)++;

}

Data Structure 2014 R. Wei 25

/*Land: process a plane that is actually landing.

Pre: None.

Post: Precesses a plane p that is landing.*/

void Land(Plane p,int curtime,int *nland,int *landwait)

{

int wait;

wait = curtime - p.tm;

printf("%3d: Plane %3d landed; in queue %d units.

\n",curtime,p.id,wait);

(*nland)++;

*landwait+= wait;

}

The function Fly is similar.

Data Structure 2014 R. Wei 26

/* Idle: undate variables for idle runway.

Pre: None.

Post: Update variables for a time unit when the

runway is idle. */

void Idel(int curtime,int *idletime)

{

printf("%3d: Runway is idel.\n",curtime);

(*idletime)++;

}

Data Structure 2014 R. Wei 27

Two functions: Start and Conclude are used to initialize and

conclude statistical data for the simulation.

/*Start: print messages and initialize the parameters.

Pre:None.

Post: Asks user for responses and initializes all

variables specified as parameters.

Uses: UserSaysYes.*/

void Start(int *endtime,double *expectarrive,

double *expectdepart)

Data Structure 2014 R. Wei 28

/*Conclude: write out statistics and conclude simulation.

Pre: None.

Post: Writes out all the statistics and concludes the

simulation.*/

void Conclude(int nplanes, int nland, int ntakeoff,

int nrefuse, int landwait, int takeoffwait,

int idletime,int endtime,

Queue *pt, Queue *pl)

We omitted the details of these two functions.

The details of creating pseudo-random numbers are omitted.

Data Structure 2014 R. Wei 29

Implementation using dynamic memory

// Queue ADT Type Defintions

typedef struct node

{

void* dataPtr;

struct node* next;

} QUEUE_NODE;

typedef struct

{

QUEUE_NODE* front;

QUEUE_NODE* rear;

int count;

} QUEUE;

Data Structure 2014 R. Wei 30

QUEUE* createQueue (void)

{

// Local Definitions

QUEUE* queue;

// Statements

queue = (QUEUE*) malloc (sizeof (QUEUE));

if (queue)

{

queue->front = NULL;

queue->rear = NULL;

queue->count = 0;

} // if

return queue;

} // createQueue

Data Structure 2014 R. Wei 31

bool enqueue (QUEUE* queue, void* itemPtr)

{

QUEUE_NODE* newPtr;

if (!(newPtr =

(QUEUE_NODE*)malloc(sizeof(QUEUE_NODE))))

return false;

newPtr->dataPtr = itemPtr;

newPtr->next = NULL;

if (queue->count == 0)

queue->front = newPtr;

else

queue->rear->next = newPtr;

(queue->count)++;

queue->rear = newPtr;

return true;

} // enqueue

Data Structure 2014 R. Wei 32

bool dequeue (QUEUE* queue, void** itemPtr)

{

QUEUE_NODE* deleteLoc;

if (!queue->count)

return false;

*itemPtr = queue->front->dataPtr;

deleteLoc = queue->front;

if (queue->count == 1)

queue->rear = queue->front = NULL;

else

queue->front = queue->front->next;

(queue->count)--;

free (deleteLoc);

return true;

} // dequeue

Data Structure 2014 R. Wei 33

bool queueFront (QUEUE* queue, void** itemPtr)

{

// Statements

if (!queue->count)

return false;

else

{

*itemPtr = queue->front->dataPtr;

return true;

} // else

} // queueFront

Data Structure 2014 R. Wei 34

bool queueRear (QUEUE* queue, void** itemPtr)

{

// Statements

if (!queue->count)

return true;

else

{

*itemPtr = queue->rear->dataPtr;

return false;

} // else

} // queueRear

Data Structure 2014 R. Wei 35

bool emptyQueue (QUEUE* queue)

{

// Statements

return (queue->count == 0);

} // emptyQueue

Data Structure 2014 R. Wei 36

bool fullQueue (QUEUE* queue)

{

// Local Definitions *

QUEUE_NODE* temp;

// Statements

temp = (QUEUE_NODE*)malloc(sizeof(*(queue->rear)));

if (temp)

{

free (temp);

return true;

} // if

// Heap full

return false;

} // fullQueue

Data Structure 2014 R. Wei 37

int queueCount(QUEUE* queue)

{

// Statements

return queue->count;

} // queueCount

Data Structure 2014 R. Wei 38

QUEUE* destroyQueue (QUEUE* queue)

{

QUEUE_NODE* deletePtr;

if (queue)

{

while (queue->front != NULL)

{

free (queue->front->dataPtr);

deletePtr = queue->front;

queue->front = queue->front->next;

free (deletePtr);

} // while

free (queue);

} // if

return NULL;

} // destroyQueue

Data Structure 2014 R. Wei 39

Application: Polynomial arithmetic

Using a reverse Polish calculator to do polynomial arithmetics.

basic idea is using a stack. The basic idea of reverse Polish

calculator is to input operands first and input operation.

For example: if we want to calculate (a+ b) ∗ (c+ d), then the

inputs are: a b+ c d+ ∗. If we want to calculate a ∗ (b+ c), then

the inputs are: b c+ a ∗.

To do the calculations, push the operands to a stack. If an

operation is input, then pop out two operands and do the operation

and then push the result to the stack. When “=” is input, pop out

the result.

Data Structure 2014 R. Wei 40

The outline of the program is quite simple: mainly use

ReadCommand to get the inputs and use DoCommand to do the

calculation.

To represent polynomials, we use a queues. For a polynomial

3x5 − 2x3 + x2 + 4, we can use a queue of size 4 to represent it.

Each item of the queue represent a term.

Data Structure 2014 R. Wei 41

typedef struct term{

double coef;

int exp;

} Term;

The term −2x3 can be stored as:

Term *newterm;

newterm->coef = -2.0;

newterm->exp = 3;

Data Structure 2014 R. Wei 42

